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Agrowing number of studies are revealing that cells can send and receive information by controlling
the temporal behavior (dynamics) of their signaling molecules. In this Review, we discuss what is
known about the dynamics of various signaling networks and their role in controlling cellular
responses. We identify general principles that are emerging in the field, focusing specifically on
how the identity and quantity of a stimulus is encoded in temporal patterns, how signaling dynamics
influence cellular outcomes, and how specific dynamical patterns are both shaped and interpreted
by the structure of molecular networks. We conclude by discussing potential functional roles for
transmitting cellular information through the dynamics of signalingmolecules and possible applica-
tions for the treatment of disease.
A unifying theme in biology is that function is reflected in struc-

ture. Consider, for example, the highly specialized structure

of a bird’s wing. The sparsely arranged bones and feather

patterning create a high surface-to-mass ratio that enables flight.

Or examine the folded conformation of an enzyme—its three-

dimensional structure indicates which substrate molecules it is

capable of binding and which reactions it may catalyze. Perhaps

themost prevalent example of a biological structure that predicts

physiological function is the genome. By knowing the sequence

structure of coding DNA, one can infer whether it encodes

a protein domain, a binding site, a conserved motif, or a hairpin

structure. These examples demonstrate that functional informa-

tion is encoded in the structural components of a cell. One may

argue that all relevant information is embedded in cellular struc-

tures, if only we could measure them in sufficient detail. But is

this the only way that biological information may be encoded?

Are there aspects of biological function that cannot be discov-

ered by simply looking at static structures?

In this Review, we discuss an emerging trend in cell biology

that suggests an additional mode for transmitting information

in cells—through the dynamics of signaling molecules (Behar

and Hoffmann, 2010). Here, dynamics is defined as the shape

of the curve describing how the concentration, activity, modifica-

tion state, or localization of a molecule changes over time

(Figure 1A). This mode of signaling encodes information in the

frequency, amplitude, duration, or other features of the temporal

signal (Figure 1B). It is therefore more rich and complex than

transmitting information through the state of a signalingmolecule

at only a single point in time. We present a broad survey of what

is known about the dynamics of different systems across

biology, focusing on well-studied systems that have been

analyzed usingmultiple quantitative measurement and perturba-

tion approaches. Through these examples, we extract general

principles about the role of dynamics in biology and what advan-
tages may be conferred by transmitting information through the

dynamics of signaling molecules.

Quantifying Dynamics in Living Systems
Understanding the dynamics of biological responses requires

collecting high-quality time series data. An important consider-

ation whenmeasuring the dynamics of a signal is the appropriate

timescale of measurement. Some processes, such as ion trans-

port or calcium release, occur in seconds. Others, including

changes in protein levels during the cell cycle, occur over

minutes or hours. Changes in some observable phenotypes

such as cell morphology or expression of cell-surface markers

can take days or longer. Thus, a good understanding of the time-

scale of a particular system is crucial for determining the appro-

priate sampling frequency to ensure that critical information is

not missed (Figure 1C). For example, when the levels of the

phosphorylated kinase ATM (ATM-P) were measured at high

frequency during the first hour after DNAdamage, the conclusion

was that ATM is rapidly phosphorylated and reaches a maximal

level within 5 min after damage, followed by a slow decrease

(Jazayeri et al., 2006). When the levels of ATM-P were measured

every hour for 10 hr, it became clear that it shows a series of

oscillations after DNA damage, an observation that led to a

new model for the control of ATM and the tumor suppressor

p53 in response to DNA breaks (Batchelor et al., 2008).

The dynamics of a signal can bemeasured across a population

of cells or in individual cells. The development of fluorescent

sensors that allow high-resolution time-lapse imaging in living

cells has improved our ability to quantify the dynamics of biolog-

ical responses in single cells. These include chemical sensors

that report activation of a signaling molecule (Welch et al.,

2011) as well as sensors that participate directly in the functional

response, such as fluorescent fusion proteins (e.g., Albeck et al.,

2008; Bakstad et al., 2012). A collective observation from these
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Figure 1. Quantifying the Dynamics of Signaling Molecules in Living Systems
(A) Different inputs may be distinguished by differences in static quantities such as the abundance, identity (e.g., posttranslational modifications, binding of
a cofactor), or location of signaling molecules. However, not only the absolute number matters (e.g., how much of a specific protein is found in a cell at a specific
time) but also the temporal pattern of these variables (the shape of the curve describing changes in concentration, localization, and modifications over time).
(B) Examples of measureable features of a dynamic signal, including amplitude, frequency, duration, delay, and cumulative level.
(C) Cellular processes occur with characteristic timescales ranging from subsecond to several days. Takingmeasurements at the appropriate timescale is crucial
for capturing the true dynamical behavior.
(D) Measurements of cell populations can obscure dynamics of individual cells. For example, pulses of p53 in response to DNA damage have a fixed height and
width. Different number of pulses and loss of synchrony among individual cells gives the appearance of damped oscillations in the population. Similarly, the
cleavage of caspase substrates during apoptosis appears to occur gradually in a population of cells. Single-cell imaging reveals that cleavage is rapid but with
a variable delay from cell to cell.
and additional studies is that individual cells differ widely in their

dynamical responses even when challenged with the same stim-

ulus (Cohen et al., 2008; Lee et al., 2009). As a result, the average

dynamical behavior of a population often represents a distorted

version of individual patterns that can lead to misinterpretations.

For example, p53 dynamics in response to DNA damage were

originally described as damped oscillations when measured by

western blot (Lev Bar-Or et al., 2000). Observation of single cells,

however, revealed that these are actually pulses with fixed height

and duration (Lahav et al., 2004). Varying number of pulses and

loss of synchronization among individual cells over time led to an

apparent widening and shortening of successive pulses in the

population (Figure 1D). Similarly, the ‘‘switch-like’’ responses

of individual cells to certain signals, such as the mitogen-

activated protein (MAP) kinase activity in developing oocytes

(Ferrell and Machleder, 1998) or the cleavage of caspase

substrates during apoptosis (Tyas et al., 2000), give the appear-

ance of a gradual increase inmeasurements of an averaged pop-

ulation (Figure 1D). These examples underscore the importance

of tracking these responses at the single-cell level.

Because tagged reporters represent significant perturbations

to the cell, it is important to establish that the introduction of

a reporter into a cell line does not alter its dynamical properties.

This can be accomplished through control experiments that

compare the rates of induction and degradation between the
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tagged and endogenous proteins using immunoblots or flow

cytometry. For example, rapid accumulation of a protein in live

cells often appears as distinct subpopulations in flow cytometry

because the protein spends relatively little time in the interme-

diate state (for an example, see Albeck et al. [2008]). However,

overinterpretation of the underlying dynamics from flow cytome-

try should be avoided because simulations show that even

graded individual responses can sometimes lead to bimodal

populations (Birtwistle et al., 2012). When fluorescent reporters

are used to study cell-to-cell variation, the use of clonal stably

transfected cell lines is desirable because transiently transfected

cells often express varying amounts of the effector, which may

alter the dynamics and cause artificial variation between cells

(Barken et al., 2005).

Impact of Identity and Strength of Upstream Stimuli
One of the first concepts to emerge from studying the temporal

behavior of signalingmolecules is that different upstream signals

can lead to different dynamical patterns of the same molecule.

An early example of this behavior was found in the extracellular

signal-regulated kinase (ERK) pathway (here, ERK refers to the

signaling module comprising both Erk1 and Erk2). It was origi-

nally observed that two separate growth factors trigger different

cell fates of rat neuronal precursors; nerve growth factor (NGF)

leads to differentiation, whereas epidermal growth factor (EGF)



Figure 2. The Identity and Strength of Upstream Stimuli Can Be

Encoded in the Dynamics of Signaling Molecules
(A) Dynamics of ERK activation in response to growth factors. Stimulation of
mammalian cells with EGF or NGF results in transient or sustained ERK acti-
vation, respectively. Dynamics represent population responses.
(B) Dynamics of NF-kB in response to TNFa or LPS. Stimulation with TNFa
results in oscillatory pattern of repeated nuclear accumulation followed by
nuclear export. LPS stimulation causes a sustained level of NF-kB trans-
location after a short delay. Dynamics represent single-cell responses.
(C) Dynamics of yeast transcription factor Msn2. Yeast respond to glucose
limitation with a coordinated burst of Msn2 translocation to the nucleus fol-
lowed by a series of sporadic bursts of Msn2 activity. Increasing strength of
these stresses lengthens the duration of the initial burst and increases the
frequency of sporadic bursting. Oxidative stress triggers a sustained nuclear
accumulation of Msn2. Increased oxidative stress intensity results in a higher
amplitude and shorter delay until the signal peak. Dynamics represent single-
cell responses.
(D) Dynamics of p53 in response to DNA damage. g-radiation causes double-
strand DNA breaks and leads to repeated pulses of p53. Increasing damage
leads to more pulses. UV radiation triggers a single pulse of p53 that increases
in amplitude and duration in proportion to the UV dose. Dynamics represent
single-cell responses.
leads to cell proliferation. At first glance, onemight conclude that

a separate signaling pathway is induced in response to each of

these stimuli, resulting in different fates. Closer examination,

however, revealed that both stimuli activate ERK but with distinct

dynamical patterns (Gotoh et al., 1990; Nguyen et al., 1993;

Traverse et al., 1992). Specifically, EGF triggers a transient

response, whereas NGF induces sustained ERK activation

(Figure 2A). These observations led to the idea that PC-12 differ-

entiation was not strictly ligand specific but was instead gov-

erned by the dynamics of ERK activity (Marshall, 1995).
Additional signaling molecules have been shown to encapsu-

late upstream signals in their dynamics. For example, different

inflammatory stimuli induce distinct temporal profiles of the tran-

scription factor NF-kB (Figure 2B). Under resting conditions,

NF-kB is continuously shuttled between nuclear and cytosolic

compartments. Activation of NF-kB by tumor necrosis factor-a

(TNFa) results in prolonged occupation in the nucleus and

transcription of its negative regulator IkBa. This negative feed-

back loop generates oscillations of transcriptionally active NF-

kB (Hoffmann et al., 2002; Nelson et al., 2004; Sung et al.,

2009; Tay et al., 2010). In contrast, bacterial lipopolysaccharide

(LPS) leads to slower accumulation and a single prolonged wave

of NF-kB activity (Covert et al., 2005; Lee et al., 2009; Werner

et al., 2005).

In various systems, both the identity and strength of the stim-

ulus have been shown to alter the dynamics of the same protein.

One example is the yeast transcription factor Msn2, which

responds to stress by translocation to the nucleus (Figure 2C).

Recent single-cell studies reveal that, in response to glucose

limitation or high osmolarity, nuclear Msn2 shows a transient

increase with a dose-dependent duration and fixed amplitude

(Hao and O’Shea, 2012). In contrast, oxidative stress leads

to prolonged nuclear Msn2 accumulation with amplitude that

increases with higher concentration of H2O2. Closer observation

in single cells reveals that, following the initial pulse, glucose limi-

tation and osmotic stress lead to a series of Msn2 bursts. The

frequency of these pulses depends on the intensity of the signal

in glucose limitation but is not affected by the intensity of the

osmotic stress (Hao and O’Shea, 2012).

The tumor suppressor p53 also shows both stimulus- and

dose-dependent dynamics (Figure 2D). Double-strand breaks

(DSBs) caused by g-radiation trigger a series of p53 pulses

with fixed amplitude and duration. Higher doses of radiation

increase the number of pulses without affecting their amplitude

or duration (Geva-Zatorsky et al., 2010; Lahav et al., 2004). In

contrast, UV triggers a single p53 pulse with a dose-dependent

amplitude and duration (Batchelor et al., 2011). Lastly, stimulus

strength affects the dynamics of NF-kB activity. Increasing the

concentration of TNFa leads to a shortened delay in NF-kB

nuclear translocation (Cheong et al., 2006; Tay et al., 2010),

and increasing the frequency of TNFa stimulation leads to

smaller amplitude oscillations (Ashall et al., 2009). The emerging

picture from these examples is that the dynamics of a signaling

molecule can capture both the identity and quantity of upstream

stimuli.

Dynamical patterns can also reflect a combination of two or

more stimuli administered simultaneously or sequentially. For

example, simultaneous treatment with multiple drugs can have

an additive effect on the resulting dynamical pattern of down-

stream signaling proteins; that is, the individual dynamical

patterns are effectively superimposed (Geva-Zatorsky et al.,

2010). In other cases, different stimuli interact synergistically or

antagonistically to produce a temporal profile in which certain

dynamical features are either enhanced or silenced, respectively

(Garmaroudi et al., 2010; Werner et al., 2008). This is often the

case for sequentially administered stimuli when cells show

desensitization to repeated stimulation (Ashall et al., 2009). For

example, treatment of human platelets with thrombin produces
Cell 152, February 28, 2013 ª2013 Elsevier Inc. 947



Figure 3. Signaling Dynamics Are Associated with Specific

Downstream Responses
(A) Transient activation of ERK leads to proliferation of neuronal precursor
cells. Sustained ERK levels precede differentiation into neurons.
(B) Transient nuclear accumulation of NF-kB triggers expression of nonspe-
cific inflammatory response genes. Sustained nuclear NF-kB levels lead to
expression of additional cytokines and chemokines required for adaptive
immune response.
(C) p53 pulses in response to g-irradiation are associated with cell-cycle
arrest. Prolonged p53 signaling, as in response to UV radiation, leads to
apoptosis.
a characteristic temporal pattern of intracellular calcium release.

If preceded by treatment with ADP, however, the thrombin-

induced pattern is attenuated (Chatterjee et al., 2010). This

implies that dynamics can reflect cellular ‘‘memory’’ to previous

stimuli and also suggests crosstalk between pathways.

Dynamics Associated with Specific Downstream
Responses
Because the dynamics of various proteins vary with the stimulus,

it seems plausible that downstream elements may respond to

these different dynamical profiles. In fact, there are a number

of examples in which the dynamics of a signaling molecule are

associated with, or at least precede specific cellular outcomes.

As mentioned previously, the transient activation of ERK in

response to EGF allows continued proliferation of neuronal

precursors, whereas sustained ERK in response to NGF leads

to differentiation of sympathetic-like neurons (Marshall, 1995)

(Figure 3A).

The development of highly sensitive calcium dyes in the 1980s

(Grynkiewicz et al., 1985) revealed a vast variety of dynamical

behaviors of calcium molecules—from oscillations induced by

fertilization of mammalian eggs (Malcuit et al., 2006) to noisy

spikes observed in the tiny volume of a single human platelet

(Heemskerk et al., 2001). Careful study of these behaviors

reveals that calcium can activate different responses based

solely on its dynamical waveform. A brief spike of calcium
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induces prolonged activation of NF-kB and JNK that lasts well

after the decay in calcium. In contrast, calcium spikes evoke

only transient nuclear translocation of NFAT (nuclear factor

of activated T cells), whereas prolonged NFAT translocation

requires sustained calcium levels (Dolmetsch et al., 1997). These

results suggest that NFAT may distinguish between different

dynamical patterns of calcium. The possibility of such a mecha-

nism has been revived by a recent study showing that two

isoforms of NFAT, NFAT1 and NFAT4, show different nuclear

localization dynamics in response to static calcium stimulation

(Yissachar et al., 2013). Whether these kinetics are responsible

for decoding the calcium signal, however, will require character-

izing NFAT1/4 dynamics in response to different calcium

dynamics.

The dynamics of NF-kB nuclear localization and DNA binding

activity control both the specificity and levels of target gene

expression (Hoffmann et al., 2002; Nelson et al., 2004). Studies

performed in cell populations show that activation of NF-kB in

response to TNFa (which produces NF-kB oscillations) induces

expression of multiple inflammatory response genes, whereas

sustained NF-kB levels induced by LPS lead to similar expres-

sion patterns but also induce additional cytokine secretion as

well as genes associated with the adaptive immune response

(Figure 3B) (Werner et al., 2005). The dynamics of p53 have

alsobeen associatedwith specific cellular responses. p53pulses

following g-irradiation are associated with transient cell-cycle

arrest and recovery, whereas a single prolonged pulse after UV

radiation precedes apoptosis (Figure 3C) (Purvis et al., 2012).

The high-level conclusion that might arise from these studies

is that cells are able to ‘‘translate’’ different dynamical patterns

of the same signaling molecule into specific outcomes. How-

ever, an important caveat to this claim is that, in addition to

altering dynamics, different stimuli also affect other pathway

components that may be responsible for the observed changes

in downstream responses. This concern must ultimately be

addressed through direct and careful perturbation of the

dynamics using genetic or pharmacological strategies.

Targeted Perturbations of Signaling Dynamics
The observation that distinct dynamical patterns are correlated

with certain cellular responses does not prove that dynamics

are the causal agents behind these responses. How can one

test whether dynamics are actually driving cellular responses?

Similar to the way researchers examine the role of a specific

gene by mutating it and testing the resultant behavior, a sound

approach to examining the role of dynamics is to artificially per-

turb the dynamics of the system and test how this affects down-

stream outcomes. Each method of perturbation offers varying

strengths and weaknesses, with the best-characterized systems

using multiple approaches.

One of the first examples of controlled perturbation of

dynamics was used to study the effect of calcium dynamics on

gene expression. Alternating treatments of calcium-carrying

ionophores and calcium-sequestering chelating agents has

been used to study the effect of different calcium frequencies

on gene expression. This ‘‘patch-clamp’’ setup has revealed

that different frequencies of calcium activate none, some, or

all of the transcription factors NF-kB, NFAT, and Oct/OAP



Figure 4. Targeted Perturbations Reveal the Role of Dynamics in

Cellular Responses
(A) Perturbation of NF-kB translocation dynamics alters gene expression.
Stimulation with TNFa triggers IKK-dependent activation of NF-kB and tar-
geting to the nucleus. Subsequent export leads to oscillations of NF-kB
nuclear activity. Blocking nuclear export with LMB results in sustained accu-
mulation of nuclear NF-kB. This leads, counterintuitively, to a shift from sus-
tained to transient target gene expression because the negative regulator IkB
is also held in the nucleus.
(B and C) Altering ERK dynamics change phenotypic responses. (B) EGF
stimulation leads to transient ERK activation and allows proliferation of PC-12
cells. The addition of PMA, an activator of PKC, increases positive feedback
from ERK to Raf and sustains the levels of activated ERK in response to EGF.
The resulting profile, which resembles ERK dynamics after NGF stimulation,
promotes differentiation. (C) NGF stimulation triggers sustained activation of
ERK and leads to cellular differentiation. Inhibition of the positive feedback
from ERK to Raf with the PKC inhibitor Gö7874 produces a transient-like ERK
response similar to that induced by NGF. This leads to a switch from differ-
entiation to proliferation.
(D) Artificially sustained p53 pulses promote cellular senescence. g-irradiation
induces double-strand DNA breaks and activation of ATM kinase. The re-
sulting pulses of p53 are driven in part by negative feedback from Mdm2 to
p53. When the ubiquitin ligase activity of Mdm2 is blocked by the small
molecule Nutlin-3, p53 levels accumulate. A sequence of Nutlin-3 doses that
sustain p53 dynamics leads to cellular senescence.
(Dolmetsch et al., 1998). Similarly, the use of photoactivatable

inositol 1,4,5-trisphosphate, the intracellular trigger for calcium

release, led to the same striking conclusion: specific frequencies

of intracellular calcium release could optimize gene expression

(Li et al., 1998). Though preceded by earlier indications that

the dynamics of second messengers are functional (Darmon

et al., 1975), these rational perturbations of intracellular calcium

dynamics provided direct evidence that specific dynamical

patterns carry functional information and execute specific

outcomes.

Perturbations of signaling dynamics can be achieved by inhib-

iting key components of the circuitry through either small mole-

cules or genetic manipulation. All of these strategies have been

employed in turn to study the role of NF-kB dynamics on target

gene specificity. Knockout mouse embryonic fibroblasts (MEFs)

lacking NF-kB’s negative regulator, IkBa, show sustained rather

than transient NF-kB activity upon TNFa treatment (Hoffmann

et al., 2002). This perturbation reveals that specific genes such

as RANTES require sustained activity of nuclear NF-kB. A similar

approach identified a component necessary for stimulus-spe-

cific NF-kB activity under LPS stimulation. Treatment with LPS

in Tnf-deficient MEFs reveals that de novo TNFa production is

responsible for the sustained phase of NF-kB activity (Werner

et al., 2005).

As an example of pharmacological perturbation of NF-kB

dynamics, treatment of cells with leptomycin B (LMB) blocks

nuclear export, thereby trapping the inactive NF-kB-IkBa com-

plex in the nucleus (Nelson et al., 2004) (Figure 4A). As a result,

nuclear localization of the NF-kB protein is sustained, but its

transcriptional activity is only transient. In contrast, natural oscil-

lations of NF-kB trigger a monotonic increase in a fluorescent

reporter gene. This led to the hypothesis that NF-kB oscillations

function to deliver newly activated NF-kB from the cytoplasm

into the nucleus (Nelson et al., 2004). In support of this view,

amore recent study shows that LMBhas no effect on the expres-

sion of early genes but leads to inhibition of intermediate and

late target genes (Sung et al., 2009).

A combination of theory and perturbation experiments reveals

the specific role of ERK dynamics in driving cell fate decisions

(Santos et al., 2007). Building on previous observations (Gram-

mer and Blenis, 1997), a pair of small molecules was used to alter

ERKdynamics and reverse the effects of EGF andNGF on PC-12

cell fate. Specifically, treatment with phorbol-12-myristate-13-

acetate (PMA), which stimulates protein kinase C (PKC) activa-

tion and introduces positive feedback from ERK to Raf, results

in sustained ERK activation and differentiation in response to

EGF (Figure 4B). Conversely, treatment with the PKC inhibitor

Gö7874 results in transient ERK activation and increased prolif-

eration following NGF treatment (Figure 4C).

Although genetic and single-treatment perturbations have

proved useful in revealing the role of dynamics in these and

several other contexts, another desirable way to alter protein

dynamics is to deliver precise and timed perturbations to the

molecule under study during the response. Our lab recently

used such an approach to show that the dynamics of p53 control

the selection and timing of gene expression in response to DNA

damage (Purvis et al., 2012). We studied cells that naturally show

pulses of p53 in response to g-radiation. These cells typically
Cell 152, February 28, 2013 ª2013 Elsevier Inc. 949



recover from moderate doses of radiation after arresting the cell

cycle and repairing their DNA. Using carefully timed doses of the

small molecule Nutlin-3, which stabilizes p53 levels, we artifi-

cially switched p53 dynamics from pulsed to sustained. This

switch in p53 dynamics led to activation of genes associated

with irreversible cellular fates such as apoptosis and senescence

and pushed cells toward senescence (Figure 4D). As with all

pharmacological agents, cross-reactivity of the drug with other

components in the cell should be carefully characterized.

Although Nutlin-3 is highly selective for p53 (Tovar et al., 2006),

use of more promiscuous agents should be compared with

genetic perturbations to substantiate any claims about function.

It is worthwhile to note that the artificially sustained dynamics

in response to g-radiation lead to a different cellular outcome

(senescence) than would be predicted from the comparable

dynamics produced naturally by UV treatment (apoptosis). This

shows that similar dynamical patterns can have different conse-

quenceswhen they arise fromdifferent stimuli. It also implies that

cell fate decisions are determined not only by the dynamics of

the signal but by a combination of additional factors such as

posttranslational modifications or spatial localization.

Another fine-grained perturbation of dynamics has been used

to investigate the effect of yeast Msn2 dynamics on target gene

expression. A mutant isoform of protein kinase A that can be

controlled by a small-molecule inhibitor modulates nuclear accu-

mulation of Msn2 (Hao and O’Shea, 2012). This setup, which

includes a microfluidic device to dynamically administer inhibitor

treatment, alters the amplitude, frequency, and duration of Msn2

nuclear localization. A fluorescent reporter of Msn2 transcrip-

tional activity reveals different expression patterns correlated

with different dynamical features. Specifically, gene expression

exhibits a Hill function-like response to Msn2 amplitude, a linear

relationship with the duration of Msn2 nuclear localization, and

a nonlinear increase with increasing Msn2 pulse frequency.

This example of perturbation has many important advantages:

it directly influences the signaling molecule under question (as

opposed to altering an upstream ligand), it can be continuously

administered and therefore offers control over all parameters

of the dynamical waveform, and it allows the ability to record

the dynamics in individual cells.

These last two studies employ a similar analysis to determine

whether different dynamical signals can be interpreted by cells.

The analysis involves calculating the cumulative signal, or area

under the curve (Figure 1B), and comparing downstream re-

sponses (e.g., gene expression) to the cumulative signal for indi-

vidual cells. The level of target gene expression in response to

Msn2 oscillations is lower than under sustained Msn2 even for

similar levels of cumulative Msn2 (Hao and O’Shea, 2012). Simi-

larly, sustained p53 leads to greater expression of senescence

genes than pulsed p53 even at the same cumulative p53 signal

(Purvis et al., 2012). These findings show a nonlinear relationship

between the cumulative level of a transcription factor and the

activation of its target genes, suggesting complex machinery

for decoding protein dynamics into specific outcomes.

Linking Dynamics with Network Structure
The identification of networkmotifs in transcription networks and

the comprehensive study of their dynamics in various systems
950 Cell 152, February 28, 2013 ª2013 Elsevier Inc.
have revealed a strong relationship between motif structure,

dynamics, and specific function (Alon, 2007; Yosef and Regev,

2011). For example, feedforward loops can generate a pulse of

activity or protect against brief fluctuations, depending on the

nature of their interactions. Many of the examples discussed

here demonstrate that dynamics play a functional role in driving

cellular responses, but they do not always explain how dynamics

are regulated or interpreted at themolecular level. In this section,

we address two questions: (1) what are the molecular mecha-

nisms that give rise to specific dynamical patterns and (2) how

can different dynamics of the same molecule be interpreted by

downstream components?

Encoding Dynamics

Studying the dynamics of signaling molecules in response to

different stimuli can help to reveal the functional feedbacks

responsible for shaping the observed dynamics. For example,

the differences in ERK dynamics in response to EGF or NGF

arise in part because of a negative feedback between ERK

and Son of Sevenless (SOS) in the EGF pathway. In addition,

NGF, but not EGF, signaling continues after receptor internali-

zation, which contributes to the sustained activation of ERK

(Sasagawa et al., 2005). There is also evidence for positive

feedback on ERK activation through PKC (Santos et al.,

2007). The implication here is that distinct responses to EGF

and NGF, which are mediated by the dynamics of ERK, are

brought about by differences in the identity and connectivity

of various pathway components (Figure 5A).

The difference between TNFa and LPS-induced NF-kB acti-

vation dynamics (Figure 2B) is also attributed to specific net-

work structures. The transient activation of NF-kB in response

to TNFa is mediated by a negative feedback loop involving

NF-kB and one of its target gene products, IkB. Activation of

the TNF receptor activates the IkB kinase complex, which phos-

phorylates IkB and triggers its subsequent degradation through

ubiquitination. Degradation of IkB allows free NF-kB to bind its

target genes, including IkB, resulting in subsequent inhibition

of NF-kB. The long-term dynamics of NF-kB in response to

persistent TNFa stimulation are controlled by another target

gene product, A20. The A20 protein has a longer half-life and

acts farther upstream than IkB, which explains why it dampens

the long-term phase of NF-kB dynamics (Basak et al., 2012;

Werner et al., 2008). In contrast, sustained activation of NF-kB

in response to LPS is attributed to positive feedback through

an autocrine pathway that involves de novo TNFa production.

Activation of the Toll-like receptor 4 (TLR4) by LPS triggers

synthesis of TNFa and activation of the TNF receptor. The delay

between TRL4- and TNF-dependent activation of NF-kB is

proposed to stagger these responses in time and give rise to

the stability of LPS-induced NF-kB activation (Covert et al.,

2005).

Similarly, specific feedbacks in the DNA damage network are

responsible for the differential dynamics of p53 in response to

g-irradiation and UV (Batchelor et al., 2011). In both networks,

PI3 kinase-related kinases (ATM or ATR) relay the damage sig-

nal to p53, activating two core negative-feedback loops, one

between p53 and the E3 ubiquitin ligase Mdm2 and the second

between p53 and the phosphatase Wip1. An important differ-

ence, however, is that the network responding to g-radiation



Figure 5. Linking Dynamics with Network Structure: Encoding and Decoding Mechanisms
(A and B) Differences in network architecture shape dynamical responses. (A) Transient activation of ERK in response to EGF is facilitated in part by negative
feedback through SOS. Sustained ERK activation by NGF relies on positive feedback through PKC, which is not activated downstream of EGFR. (B) g-radiation
causes double-strand DNA breaks and leads to p53 pulses. Negative feedback through the phosphatase Wip1 attenuates the damage signal by dephos-
phorylating ATM and thereby controls the amplitude and duration of p53 pulses. UV radiation activates ATR kinase. The lack of negative feedback betweenWip1
and ATR in the UV pathway is responsible for the difference in p53 dynamics.
(C and D) Network structure selectively interprets dynamics. (C) A network of early responding gene products, such as c-Fos, are induced by activated ERK.
Transient ERK activation is not sufficient to productively accumulate c-Fos, whereas sustained ERK activation leads to accumulation of c-Fos. c-Fos is phos-
phorylated by ERK (pc-Fos) and leads to expression of prodifferentiation genes. Thus, the accumulation of early gene products such as c-Fos serves as
a persistence detector for sustained ERK activation. (D) A gene regulatory circuit discriminates transient from persistent TLR4 signals. NF-kB and C/EBPd form
a coherent feedforward loop to stimulate maximum expression of Il6 transcription. Attenuation of transient LPS signals is mediated by inhibition through ATF3,
whereas the dramatic increase in Il6 under persistent LPS stimulation is due in part to positive feedback through autoregulation of C/EBPd.
includes an additional negative feedback between p53 and ATM

mediated byWip1 (Figure 5B). This feedback is essential for trig-

gering p53 pulses in response to g-radiation because silencing

Wip1 after g-radiation produces UV-like dynamics (Batchelor

et al., 2008). In addition, the response to g-radiation, but not to

UV, is excitable, in which low transient inputs are sufficient for

triggering a full p53 pulse. The current model only partially reca-

pitulates the excitability observed experimentally (Batchelor

et al., 2011), and additional work is required for identifying the

mechanism of excitability in the response to g-radiation.
Decoding Dynamics

The second question that arises when considering the functional

role of dynamics is how cells interpret different dynamical

patterns. That is, what molecular mechanisms are necessary

to detect time-dependent features and translate these patterns

into distinct phenotypic responses? Although many studies

have identified functional roles for specific temporal behaviors,

only a small fraction of these have determined precisely how

different dynamical patterns are distinguished at the molecular

level to trigger different downstream responses (Behar et al.,
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2007). Identifying the mechanisms that decode dynamics

remains one of the most challenging goals for the field.

One of the simplest mechanisms proposed for interpreting

dynamics is based on the sensitivity of downstream effectors

for the molecule displaying dynamics. Under this mechanism,

low-affinity effectors require sustained input levels in order to

show significant activation, whereas high-affinity effectors can

respond to rapidly changing input levels. There is some evidence

for this mechanism in the differential activation of JNK, NF-kB,

and NFAT in response to transient or sustained calcium. JNK

and NF-kB, which respond to strong transient calcium bursts,

have a low affinity for calcium and therefore require high concen-

trations for activity. This property, combined with a slow rate of

degradation, allows these downstream factors to stay elevated

after a brief stimulation with calcium. NFAT, in contrast, has

a high affinity for calcium and a rapid rate of degradation.

Thus, low and sustained calcium levels will preferentially activate

NFAT over JNK and NF-kB (Dolmetsch et al., 1997). A similar

mechanism was proposed to decode dynamics of the yeast

stress response factor Msn2. Differences in transcription factor

binding properties and the kinetics of promoter transitions

govern the response to different dynamical patterns of Msn2

(Hao and O’Shea, 2012). Importantly, these mechanisms do

not involve additional factors but rely solely on the strengths of

association between the upstream regulator and its effectors.

More complex mechanisms for decoding temporal signals are

based on specific network motifs in the responding network that

sense time-dependent changes in an upstream regulator. Exam-

ples of this type of decoding mechanism have been especially

difficult to identify, with two notable exceptions. In the ERK

pathway, transient and persistent ERK dynamics are distin-

guished by a set of ‘‘immediate early gene products’’ that accu-

mulate in response to activated ERK (Murphy et al., 2002, 2004).

When ERK activation is transient, gene products such as c-Fos

are induced but then undergo rapid degradation. When ERK

levels are persistent, however, newly synthesized c-Fos is

directly phosphorylated by the still-active kinase, which stabi-

lizes c-Fos in the nucleus. Many of these immediate early gene

products are transcription factors that control cell-cycle pro-

gression and other cell fate expression programs and possess

ERK docking sites (Amit et al., 2007; Murphy et al., 2004).

Thus, a feedforward loop comprised of a fast arm (ERK activa-

tion) and a slow arm (c-Fos accumulation) serves as a persis-

tence detector for the duration of ERK activation (Figure 5C).

More recent work in the ERK system has shown that these two

arms of the system act not only at different time scales but

also in different compartments of the cell (Nakakuki et al.,

2010). Thus, ERK dynamics are decoded by a finely tuned

spatiotemporal network controlling cell fate decisions.

The second example of a specific network structure that

decodes dynamics is the control of the inflammatory response

by TLR4 signaling (Litvak et al., 2009). Expression of key inflam-

matory response genes such as interleukin 6 (Il6) requires persis-

tent TLR4 activation, whereas transient TLR4 stimulation is

effectively filtered out. Using a time series of gene expression

profiles in response to the TLR4-stimulating agonist LPS, two

waves of transcription have been identified in which a pair of

gene products in the first wave, NF-kBandATF3, control expres-
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sion of an inflammatory regulator in the second cluster, C/EBPd.

Persistent activation of NF-kB induces expression of C/EBPd,

which regulates itself to provide strong positive feedback. In

addition, C/EBPd synergizes with NF-kB to allow productive

expression of Il6 and other inflammation genes (Figure 5D).

This sophisticated decoding mechanism controls not only Il6

but tens of additional genes associated with host defense

against infection (Litvak et al., 2009).

Notably, both the ERK and TLR4 decoding networks involve

some type of a feedforward network structure. It is possible

that a feedforward loop motif may also decode p53 dynamics

to control activation of senescence (Figure 4D). In this scenario,

one of p53’s target genes might serve as an intermediate factor

that is required for activating senescence with p53. If such

a factor decays with a timescale close to the timescale of the

pulses, it will not accumulate during the pulses but only during

a sustained p53 response, resulting in senescence. This mecha-

nism would explain the accelerated expression of senescence

genes under sustained p53 signaling (Purvis et al., 2012). Identi-

fication of such a factor, however, will require characterizing

the kinetics of p53 target gene induction in combination with

knockdown studies to identify which transcripts are required

for expression of key senescence markers.

Decoding of temporal patterns is not limited to intracellular

signals. A recent study proposes a model for how different

temporal patterns of blood insulin are decoded by the AKT

signaling network in insulin-sensing cells such as those found

in the liver (Kubota et al., 2012). The authors first note that intra-

cellular AKT activation follows the same dynamical trends as

external insulin levels. By subjecting cells to different dynamical

patterns of insulin, they identify downstream effectors that

decode different features of the temporal profile of AKT. These

results are consistent with a computational model in which

different kinetics and connectivity within the signaling network

allow each molecule to detect specific parts of the temporal

profile. Although perturbation experiments will be necessary to

validate this mechanism, the study provides an attractive model

in which different dynamical patterns of insulin release are trans-

lated into appropriate metabolic responses. For example, ribo-

somal protein S6 kinase (S6K), which is involved in protein

synthesis, responded to the transient insulin response that might

appear after a meal. Glucose-6-phosphatase (G6Pase), which is

involved in gluconeogenesis, responds to low insulin concentra-

tions that may be present during fasting.

The identification of molecular circuits that decode signaling

dynamics remains a major challenge for the field. Decoding

mechanisms promise to provide critical answers about the func-

tion of temporal signals because they represent the connection

between signal patterns and functional responses (Behar and

Hoffmann, 2010). Computational approaches have been helpful

in understanding the connection between topology, dynamics,

and function. For example, Ma et al. (2009) performed a compu-

tational search for all possible three-node enzyme network

topologies to identify those that could achieve biochemical

adaptation, a dynamical response that returns to baseline levels

regardless of stimulus strength. A similar approach has been

applied to identify networks capable of achieving other emergent

behaviors such as interpreting morphogen gradients (Cotterell



Figure 6. Specific Control Mechanisms Achieved through Modulation of Dynamics
(A) (Top) Different amplitudes of a transcription factor lead to different expression of target genes, depending on their promoter response curves. Different
amplitudes of the transcription factor aremarked by green (lowest) to yellow (highest) dotted lines. Promoter response curves for two hypothetical genes, A andB,
are shown as red and blue lines. (Bottom) Frequency modulated transcription factor dynamics maintain relative proportion of target gene expression. Regardless
of stimulus strength, transcription factor activity reaches the same level (gray dotted line) and therefore activates target gene promoters at the same location in the
response curves. Stimulus strength affects the frequency of the transcription factor activation; higher frequency (yellow) will strike the promoters more often than
lower frequency activation (green). This leads to the accumulation of target genes at the same relative proportion (right). See main text and Cai et al. (2008) for
further details.
(B) Timing and fold change of ERK2 response is more conserved between individual cells than absolute levels. Individual cells vary considerably in the absolute
levels of ERK2 under basal conditions as well as after stimulation with EGF. Certain parameters that describe the timing of the response, however, show less
variability. The delay until peak activation, signal duration, and fold change are among the most conserved parameters. See Cohen-Saidon et al. (2009).
and Sharpe, 2010). In a similar vein, Modular Response Analysis

(Kholodenko et al., 2002), a method for extracting the strength

and topology of dynamical subnetworks, is used to identify

structural differences between NGF- and EGF-induced MAPK

network topology (Santos et al., 2007). Such approaches are

a valuable resource because they help narrow down the search

for molecular participants that may regulate and interpret sig-

naling dynamics.

Functions Achieved through Modulation of Signaling
Dynamics
The examples presented thus far suggest that controlling the

temporal behavior of signalingmoleculesmay represent a unique

signaling strategy for cells. For example, the conversion of stim-

ulus strength to signal duration, as shown forMsn2 and p53,may

be a general feature of cell signaling networks. By converting

stimulus dose to signal duration, signaling networks can detect

a greater range of stimulus concentrations even beyond the

apparent saturation limit (Behar et al., 2008). However, there

is indication that the full scope of functionality provided by

signaling dynamics remains to be discovered. We now present

some recent examples that illustrate the rich functional behav-

iors enabled by controlling signaling dynamics.

A highlighted example in the study of temporal behaviors is the

manner in which transcription factor dynamics may control gene

expression. In the canonical model of transcriptional activation,

expression of target genes is controlled by the abundance of

the transcription factor, usually with a Hill-like or linear dose-

response curve (Figure 6A). For transcription factors with

multiple gene targets, an increase in transcription factor levels

will have different effects on each promoter because, in general,
the size and shape of these response curves differs for each

promoter. However, by controlling the frequency rather than

the absolute level of a transcription factor, cells work within the

same range of concentration and thus have a consistent effect

on target promoters. This allows coregulated genes to be ex-

pressed in the same relative proportion regardless of promoter

affinities (Figure 6A). Such behavior was discovered by studying

the dynamics of the yeast transcription factor Crz1, which shows

bursts of nuclear localization in response to calcium (Cai et al.,

2008). The concentration of calcium controls the frequency of

Crz1 bursts—an analog-to-digital conversion reminiscent of

the yeast response to glucose limitation (Figure 2C). Further

examination showed that the frequency of Crz1 activation

ensures that target genes are transcribed in the same proportion

regardless of promoter affinities for Crz1 (Figure 6A).

The ability tomeasure not only the temporal features of a signal

but also its precise intracellular location has shown that

dynamics sometimes operate in specific parts of a cell. A prom-

inent example of spatiotemporal signaling occurs in the Msn2

and NF-kB pathways, in which the transcription factor is shuttled

in and out of the nucleus. This use of compartmentalization

stands in contrast to the p53 network inwhich pulsatile dynamics

are governed by repeated accumulation and degradation of total

protein levels. Additional studies have shown how dynamics

play a role in spatially distributed intracellular networks (Kholo-

denko et al., 2010 and references therein). In rat hippocampal

neurons, for example, the long dendritic spines allow accumula-

tion of membrane-generated signals. With appropriately tuned

temporal behavior, information about the spatial structure of

the spine can be transmitted to distal parts of the cell (Neves

et al., 2008). Similarly, gradients in signal concentration have
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been shown to control tip project in mating yeast (Maeder et al.,

2007) and the diffusion of Ras from the plasma membrane

(Chandra et al., 2012). In each instance, the interplay between

intracellular location and temporal behavior is necessary to carry

out specific signaling processes.

Dynamics can also reflect information about the resting state

of a cell. Studies on the dynamics of ERK2 translocation in indi-

vidual human cells reveal a large variation in basal ERK2 nuclear

levels (Cohen-Saidon et al., 2009). Upon EGF stimulation, cells

show widely varying peak levels of ERK2. However, when the

fold change in ERK is quantified relative to the starting levels,

the dynamics of the responses are very similar (Figure 6B).

This presents an elegant example of how cells can achieve

a standardized response in the background of natural noise.

Pulsatile patterns can function as temporal rulers in which

each pulse represents a fixed length of time. This phenomenon

is demonstrated in the study of spore formation in Bacillus sub-

tilis (Levine et al., 2012). The bacterium can defer sporulation for

extended time periods by first undergoing multiple rounds of

growth and proliferation. How does the bacterium measure this

length of time? Time-lapse imaging of the master-regulator

Spo0A in individual cells reveals that the deferral time is

controlled by a positive feedback loop that allows Spo0A to

accumulate to a critical level during multiple cell-cycle genera-

tions. This dynamical behavior may increase the bacterium’s

chance of survival, perhaps by allowing the accumulation of

additional nutrients or the proliferation of additional offspring

before sporulation occurs.

Conclusions and Future Directions
We have presented a thematic overview of how cells store infor-

mation in temporal signaling patterns, focusing on functional

outcomes connected to each dynamical pattern. In each of these

cases, however, dynamics probably represent only one layer of

regulation within a complex signaling response that executes

different cellular outcomes. In fact, we have seen that different

dynamical patterns arise because of differences in network

structure or the kinetics of individual molecular interactions.

Thus, changes in the identity and strength of other pathway

activities, such as posttranslational modifications, are likely to

work with dynamics to induce stimulus-specific responses.

A better understanding of how signaling dynamics are regu-

lated and how they affect cellular responses may provide new

insights for manipulating them in a controlled way. In turn, this

may enable new pharmacological strategies for altering cell

fate. Oscillations of p53, for example, have been shown to occur

in mice after total body irradiation (Hamstra et al., 2006). In prin-

ciple, the same perturbation of p53 pulses used to induce senes-

cence in cell culture (Purvis et al., 2012) could be administered

in vivo. This may be useful in situations in which the dynamics

of healthy and diseased cells are expected to differ (e.g.,

Francisco et al., 2008). In this scenario, dynamics represent

the phenotype that distinguishes cells and may be targeted by

small molecules or other perturbations.

A major theme of this review is the use of perturbations to

control dynamical patterns. Such strategies hold promise as an

engineering tool for use in synthetic biology. There has been

recent work demonstrating light-based perturbations to cellular
954 Cell 152, February 28, 2013 ª2013 Elsevier Inc.
dynamics (Levskaya et al., 2009; Toettcher et al., 2011), which

could provide exceptionally noninvasive and precise control

over temporal signaling.

The number of studies that are focused on the dynamics of

biological responses is growing and well exceeds the number

of studies we could mention in this Review. As fluorescent

labeling and time-lapse technology become better and cheaper,

it may soon become clear that the vast majority of signals (if not

all of them) are transferred through specific dynamical patterns

of their components. If so, the study of signaling dynamics prom-

ises to provide rich and complex insights about circuit structure

and function that could not be otherwise revealed. This is the

case for calcium, p53,Msn2, NF-kB, and nearly all other systems

mentioned in this review; study of their dynamical properties

revealed previously unappreciated regulatory roles. The same

applies to the bird’s wing—the structure of the wing may give

excellent clues about its potential function, but there is no substi-

tute for observing the fluid motion of a wing in flight.
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